Relationship between solute hysteretic behaviour and hydrological pathways

at farm-scale

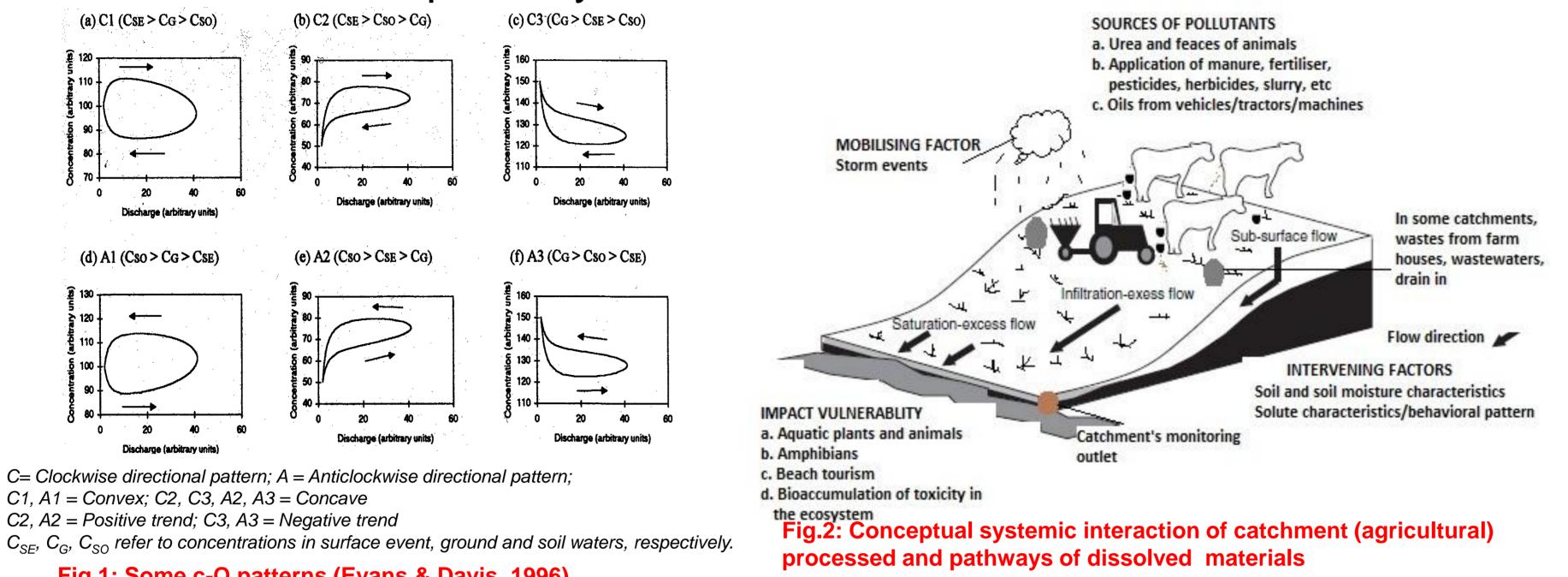
Adebayo Eludoyin

Department of Geography, CLES, University of Exeter, EX4 4RJ Rothamsted Research, North Wyke, EX20 2SB, Devon, UK aoe201@exeter.ac.uk, oaeludoyin@yahoo.com

Supervisory Team

Richard Brazier, Tim Quine Department of Geography, CLES, University of Exeter

Phil Murray Rothamsted Research, North Wyke, EX20 2SB


ROTHAMSTED

RESEARCH

Introduction

VERSITY OF

Solute hysteretic behaviour describes the varying patterns that are usually exhibited by the time varying concentration of dissolved solids with discharge. The patterns often vary from simple to complex, and 2 to 3D. Evans and Davis (1996) suggested a framework for few determinable shapes (Fig. 1), while many other complex patterns appear in literature. Fig 2 highlights known sources of dissolved solids, their pathways and environmental vulnerability to pollution impact. The characteristics of some pathways are described in Table 1. Table1: Hydrological pathways and their attributes

Name	Pathway	Description	Dominant water type
Hortonian Flow	Surface	Occurs when and where rainfall intensity exceeds infiltration capacity	Event
Saturation Excess Flow or Hewlettian runoff Return flow	Surface & throughflow	Occurs when and where rainfall rate is greater than the soils saturated hydraulic conductivity. Explained by the variable source area concept	Event
Lateral flow	Sub-surface	Occurs when infiltrated storm water encounter s a less permeable layer at some depth before groundwater. The top soil posses high hydraulic conductivity	Pre-event
Preferential flow (PF)	Sub-surface	Occurs where water infiltrates through macropores or pipes and bypass a large portion of soil matrix	Pre-event
Drain flow	Surface & interflow	A form of PF. It is a system whereby a subsurface conduit is laid to intercept surface runoff	Event
Piston flow	Sub-surface	Occurs as downward drains through the soil with a generally uniform wetting front, carrying pollutants towards the groundwater zone; in soils with generally uniform wetting front	Pre-event
Groundwater	Groundwater	Occurs as runoff initially goes into the soil and thence through groundwater flow to the stream or evaporated	Pre-event

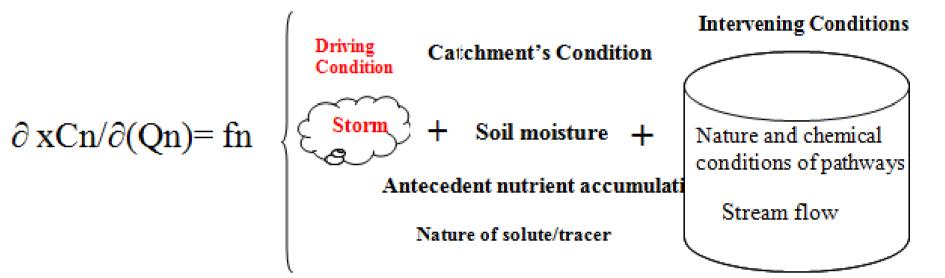
C= Clockwise directional pattern; A = Anticlockwise directional pattern; C1, A1 = Convex; C2, C3, A2, A3 = ConcaveC2, A2 = Positive trend; C3, A3 = Negative trend

Fig.1: Some c-Q patterns (Evans & Davis, 1996)

Research Questions

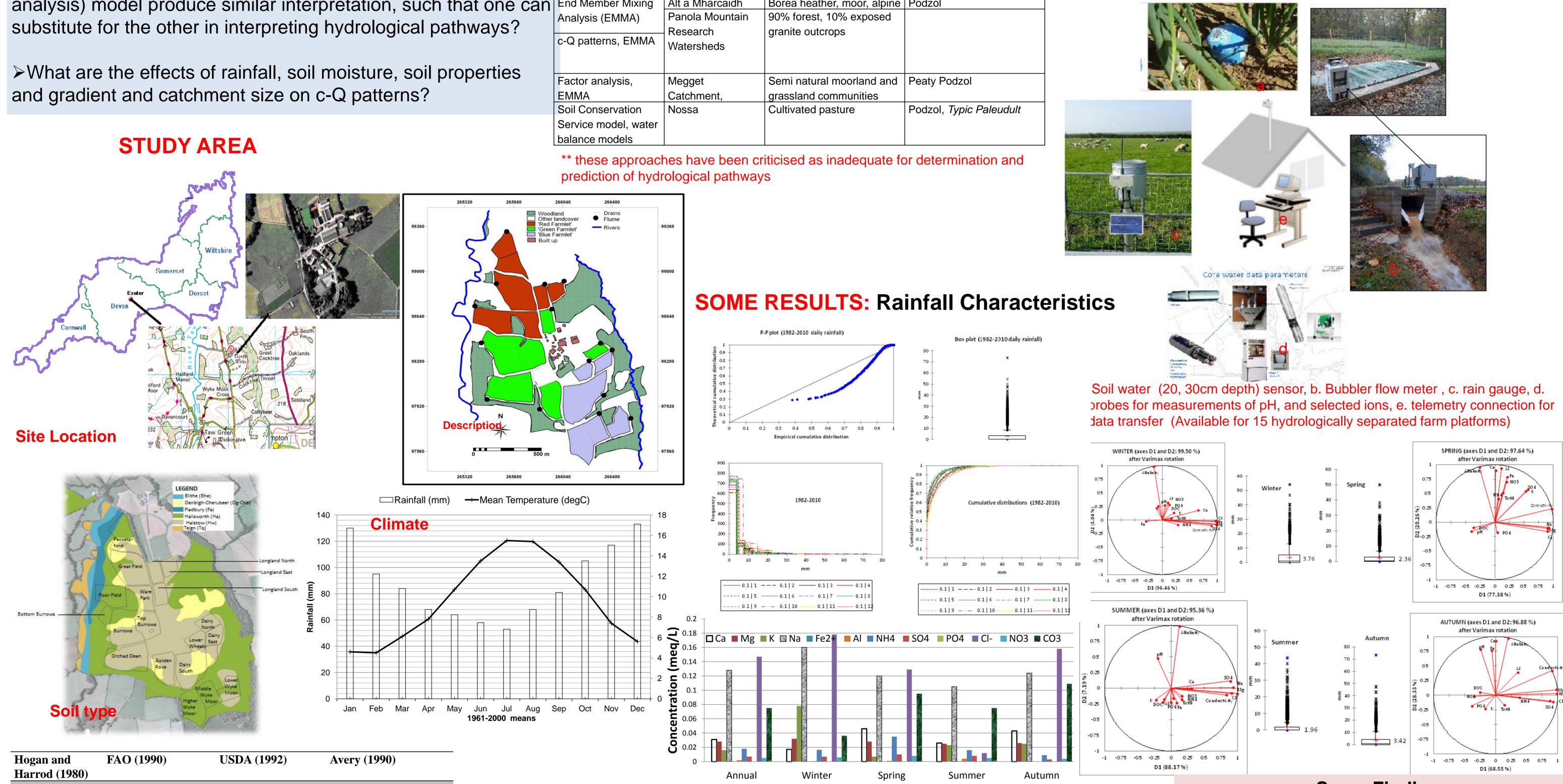
>Would the c-Q pattern for same solute significantly vary in catchments with similar dominant soil types?

 \rightarrow How would c-Q patterns vary significantly with seasons?


 \rightarrow Are c-Q patterns nonlinear and time invariant?

>Would c-Q, End Member mixing and a nonlinear (wavelet analysis) model produce similar interpretation, such that one can

Table 2: Existing approaches to hydrological pathways


Method	Catchment characteristics			
		Vegetation	Dominant soil	
	Catchment name			
Hydrograph	Kawakami	Dense forest	Soils developed from the	
separation	Experimental		Neocene volcanic rocks	
	basin,			
Hydrograph,	Denbrook	Grasslands	Clay (Hallsworth series)	
Chemograph	catchment,			
Statistical models			Peat	
	Unterehrendingen	Spruce-breech forest	Fine loamy Dystric	
			Cambisols	
Riparian flow	Vastrabacken	Spruce and Scots pine	Podzol, Peat	
concentration				
integration model				
End Member Mixing	Alt a Mharcaidh	Borea heather, moor, alpine	Podzol	
Analysis (EMMA)	Panola Mountain	90% forest, 10% exposed		
	Research	granite outcrops		
c-Q patterns, EMMA	Watersheds			
Factor analysis,	Megget	Semi natural moorland and	Peaty Podzol	
EMMA	Catchment,	grassland communities		
Soil Conservation	Nossa	Cultivated pasture	Podzol, Typic Paleudult	
Service model, water				
balance models				

METHODS Conceptual Framework

Cn= concentration of 'n' ion (mg/L), Qn = discharge of 'n' ion (L/s), fn= function

Field Instrumentation

Halstow	Stagni-vertic cambisol	Aeric haplaquept	Typical non-calcareous pelosols
Hallsworth	Stagni-vertic cambisol	Typic haplaquept	Pelo-stagnoley soils
Denbigh	Stagni-eutric cambisol	Dystric eutrochrept	Typical brown earths
Fladbury	Gleyi-eutric fluvisol	Vertic fluvaquent	Pelo-alluvial gley soils

Acknowledgements

Dominant land use: grazing

Atmospheric concentration in 2011

Research Objectives: Further study

>Assess the influence of rainfall chemistry on water quality patterns through analysis of data from 9 selected hydrologically separated farmlets and an Ecological Change Network station at North Wyke;

>Establish relationships among discharge, concentration of dissolved solids, rainfall and soil moisture for each farmlet;

Assess the hydrographs separation, EMMA, Statistical and wavelet analysis techniques for flowpath delineation in selected farmlets; and

Characterize the hysteresis in discharge-concentration relationship as affected by rainfall, soil moisture, soil types, and other 'catchment's characteristics.

Some Findings

•Rainfall has significantly increased in summer but decreased in winter between 1995 and 2010

•Rainfall pH varied from 4.29 to 7.34, with median (5.33) being lower than the level recorded for the county (Devon) in 1980-2011

•Annual dominance of Na⁺ and Cl⁻ in rainwater, attributed to sea sprays

• Seasonal variation in the atmospheric constituents; agricultural influence in the spring and summer and natural occurring sea sprays in the winter.

Some References

Evans C, Davies T (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research 34: 129-137

Harrod T, Hogan D (1981) The soils of North Wyke and Rowden. Unpublished Report to North Wyke Research, revised edition of original report by TR Harrod, Soil Survey of England and Wales

2011 Education Trust Fund/Obafemi Awolowo University Intervention, Nigeria