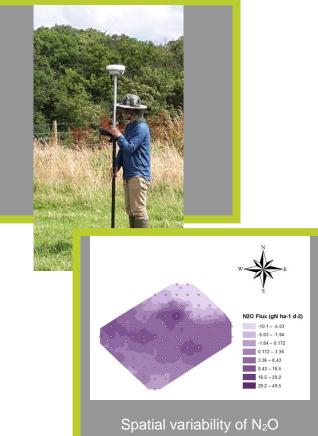
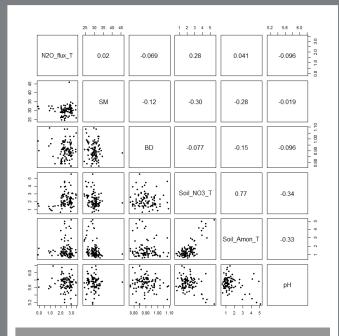
North Wyke Farm Platform


Case study no. 16

Spatial relationships of soil factors to GHGs at field scale


Laura Cardenas, Paul Harris, Adrian Collins, Tom Misselbrook and Noveen Guo

Following a pilot study conducted in the Dairy North sub-catchment in summer 2015 consisting of 25 sample points for soil factors that are expected to spatially-correlate with Greenhouse gases (GHGs), the summer 2016 survey was conducted on a much finer resolution grid, resulting in 99 sample points. Via spatial statistical techniques, we are exploring ways to make accurate predictions of GHGs (N₂O) using soil factors as our predictors for a sheep-grazed field. Soil factors include: soil N, soil moisture, bulk density and pH. Soil cores at 0-10 cm depth were taken and drysieved to <63 μ m to analyse the soil chemistry. Cylinder cores of known volume were collected to measure bulk density. White chambers were inserted in the ground for taking gas samples for N₂O analysis.

Noveen Guo marking the sampling points via GPS.

measurements

Relationships between parameters

Initial exploratory work has not provided significant results where the response to predictor variable correlations are weak resulting in a poor multiple regression fit with an R-squared of only 0.17 and an AIC of 182. However, on application of a regression model spatial (in this case Geographically Weighted Regression) the Rsquared increased to 0.76 together with a decrease in AIC to 164 units.

This suggests that spatial effects are important (i.e. relationships are spatially-heterogenic) and also suggests the strong likelihood of a key missing predictor of N_2O , such as a livestock movement surface.

A kriging surface for N_2O is also given showing the sample configuration of the study data in the Dairy North sub-catchment of the North Wyke Farm Platform.

